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Painlevé coordinate 5

3.2 Entropy of Schwarzschild-de Sitter black hole due to arbitrary spin fields

in Lemaitre coordinate 9

4. Summary 12

1. Introduction

Bekenstein and Hawking [1, 2] found that, by comparing black hole physics with thermody-

namics and from the discovery of black hole evaporation, black hole entropy is proportional

to the area of the event horizon. The discovery is one of the most profound in modern

physics. However, the issue of the exact statistical origin of the black hole entropy has

remained a challenging one. Recently, much effort has been concentrated on the prob-

lem [3]–[17]. The “brick wall” model (BWM) proposed by ’t Hooft [18] is an extensively

used way to calculate the entropy in a variety of black holes, black branes, de Sitter spaces,

and anti-de Sitter spaces [6]–[17]. In this model the Bekenstein-Hawking entropy of the

black hole is identified with the statistical-mechanical entropy arising from a thermal bath

of quantum fields propagating outside the event horizon. In refs. [6, 17], the authors found

that although the original BWM has contributed a great deal to the understanding and

calculation of the entropy of a black hole, there are some drawbacks in it such as the little

mass approximation and taking the term including L3 (L being the “infrared cutoff”) as

a contribution of the vacuum surrounding the black hole, etc. The model is constructed

on the basis of thermal equilibrium at a large scale, so it cannot be applied to cases out

of thermal non-equilibrium problems, such as spacetime with two horizons, for example,

a Schwarzschild-de Sitter black hole and Vaidya black hole [16, 17]. Therefore, in this

paper we utilize the improved thin-layer BWM [6, 17] to resolve Schwarzschild-de Sitter

spacetime.

– 1 –



J
H
E
P
0
9
(
2
0
0
7
)
0
6
7

In quantum field theory, we can use a timelike Killing vector to define particle states.

Therefore, in static spacetimes we know that it is possible to define positive frequency

modes by using the timelike Killing vector. However, in these spacetimes there could

arise more than one timelike Killing vector which make the vacuum states inequivalent.

This means that the concept of particles is not generally covariant and depends on the

coordinate chosen to describe the particular spacetime. It is therefore interesting to study

the following question: can we obtain the same statistical mechanical entropies of the black

hole in the Painlevé and the Lemaitre coordinates due to the fact that in this question arises

naturally after Shankaranarayanan et al. [19, 20] studied the Hawking temperature of the

Schwarzschild black hole in the Painlevé and the Lemaitre coordinates by using the method

of complex paths and they showed that the results are equal to those in the Schwarzschild-

like coordinate. For the massless scalar field in the general static black hole, Jing [7] find

that the entropies in the Painlevé and Lemaitre coordinates are exactly equivalent to that

in the Schwarzschild-like coordinate. However, whether the entropies of the Schwarzschild-

de Sitter black hole due to arbitrary spin fields are the same in the Painlevé, the Lemaitre

and Schwarzschild-like coordinates is still an open question. In this paper we will study

the question carefully.

In order to compare the results obtained in this article with the entropy of the

Schwarzschild-de Sitter black hole in the Schwarzschild-like coordinate, we first introduce

the entropy for the Schwarzschild-like coordinate. The Schwarzschild-de Sitter spacetime

in the Schwarzschild-like coordinate is described by

ds2 = fdt2s − f−1dr2 − r2dΩ2, (1.1)

with

f(r) = 1 − 2m

r
− λ

3
r2,

where m is the mass of the black hole and λ is cosmological constant which we will assume

it is positive, and the geometric unit G = c = ~ = κB = 1 is used. The Schwarzschild-

de Sitter black hole have two horizons, i. e., the black hole event horizon rH and the

cosmological horizon rC

rC =
2√
λ

cos α, rH =
2√
λ

cos

(

α +
π

3

)

, with α =
1

3
arctan

√

1

9λm2
− 1.

By using the improved thin-layer brick wall method, S. Q. Wu and M. L. Yan [6] found

that the entropy of the Schwarzschild-de Sitter black hole due to arbitrary spin field in the

Schwarzschild-like coordinate is

S/gs =
15 + (−1)2s

16

[

Ah

48πǫ2
+

1

45

(

1 − λr2
h

2

)

ln
Λ

ǫ

]

− 3 + (−1)2s

4

λ(1 + 2s2)

36π
Ah ln

Λ

ǫ
, (1.2)

where gs = 1 for scalar field (s = 0), gs = 2 for Weyl neutrino (s = 1/2), Maxwell

electromagnetic (s = 1), Rarita Schwinger gravitino (s = 3/2) and linearized Einstein

gravitational (s = 2) fields, and gs = 4 for massless Dirac field (s = 1/2), Ah = 4πr2
C or

– 2 –



J
H
E
P
0
9
(
2
0
0
7
)
0
6
7

4πr2
H , respectively. From (1.2) we can know that the entropies depend not only on the

spins of the particles but also on the cosmological constant except different spin fields obey

different statistics.

The paper is organized as follows. In section 2 the metrics of the Schwarzschild-de

Sitter black hole in the Painlevé and Lemaitre coordinates are introduced. In section 3 the

entropies of the Schwarzschild-de Sitter black hole due to the arbitrary spin fields in the

Painlevé and Lemaitre coordinates are investigated. Section 4 is devoted to a summary.

2. Metrics of Schwarzschild-de Sitter spacetime in Painlevé and Lemaitre

coordinates

We now introduce the metrics of the Schwarzschild-de Sitter black hole in the Painlevé and

Lemaitre coordinates.

2.1 Painlevé coordinate representation for Schwarzschild-de Sitter black hole

The time coordinate transformation from the Schwarzschild-like coordinate (1.1) to the

Painlevé coordinate [7] is

t = ts +

∫

√

1 − f(r)

f(r)
dr. (2.1)

The radial and angular coordinates remain unchanged. With this transformation, the line

element (1.1) becomes

ds2 = gttdt2 + 2gtrdtdr + grrdr2 + gθθdθ2 + gϕϕdϕ2, (2.2)

with

gtt = f(r), gtr = grt = −
√

1 − f(r), grr = −1,

gθθ = −r2, gϕϕ = −r2 sin2 θ. (2.3)

The inverse metric is

gtt = 1, gtr = grt = −
√

1 − f(r),

grr = −f(r), gθθ = − 1

r2
, gϕϕ = − 1

r2 sin2 θ
. (2.4)

The metric in the Painlevé coordinate has distinguishing features: (a) The spacetime

is stationary but not static, so the time direction remains to be a Killing vector; (b) there

is now no singularity at f(r) = 0, so the metric is regular at horizons of the black hole.

That is to say, the coordinate complies with perspective of a free-falling observer, who is

expected to experience nothing out of the ordinary upon passing through the event horizon.

However, we will see next that the event and cosmological horizons manifests themselves

as singularities in the expression for the semiclassical action.

– 3 –
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2.2 Lemaitre coordinate representation for Schwarzschild-de Sitter black hole

The coordinates that transform from the Painlevé coordinate (2.2) to the Lemaitre

coordinate (V, U, θ, ϕ) are given by

U = r̃ − t, V = r̃ + t, (2.5)

with

r̃ = t +

∫

dr
√

1 − f(r)
,

where t is the Painlevé time and V is the Lemaitre time. The angular coordinates θ and ϕ

remain the same. The line element (2.2) in the new coordinate becomes

ds2 = gV V dV 2 + 2gV UdV dU + gUUdU2 + g̃θθdθ2 + g̃ϕϕdϕ2, (2.6)

with

gV V = gUU =
1 − f̃

4
, gV U = gUV = − f̃ + 1

4
,

g̃θθ = −y, g̃ϕϕ = −y sin2 θ, (2.7)

where

f̃(U) = 1 − f(r), y(U) = r2.

The inverse metric is

gV V = gUU = −1 − f̃

f̃
, gV U = gUV = − f̃ + 1

f̃
,

g̃θθ = −1

y
, g̃ϕϕ = − 1

y sin2 θ
. (2.8)

We can see that the Lemaitre coordinate is time-dependant and the metric (2.6) has no

coordinate singularity just as in the Painlevé coordinates. However, we will know that the

event and cosmological horizons also manifests themselves as singularities in the expression

for the semiclassical action.

3. Entropy of Schwarzschild-de Sitter black hole due to arbitrary spin

fields in different coordinates

In this section we will study the entropy of the Schwarzschild-de Sitter black hole due

to arbitrary spin fields in the Painlevé and Lemaitre coordinates by using the improved

thin-layer brick wall method.
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3.1 Entropy of Schwarzschild-de Sitter black hole due to arbitrary spin fields

in Painlevé coordinate

Now in order to derive the master equation for arbitrary spin fields in Painlevé coordi-

nate (2.2), we work it within the Newman-Penrose formalism [21, 22] by taking covariant

components of the null tetrad vectors as

lµ =

(

1, − 1 +
√

1 − f(r)

f(r)
, 0, 0

)

, nµ =
1

2

(

f(r),
f(r)

1 +
√

1 − f(r)
, 0, 0

)

,

mµ = − r√
2

(

0, 0, 1, i sin θ
)

, mµ = − r√
2

(

0, 0, 1, − i sin θ
)

, (3.1)

The non-zero spin coefficients are

ρ = −1

r
,

µ = − 1

2r
f(r),

γ =
1

4
f ′(r),

α = −β = − 1

2
√

2r
cot θ, (3.2)

where a prime denotes the differential with respect to r, and only one non-zero Weyl tensor

is

Ψ2 = −m

r3
+

λ

3
. (3.3)

Assuming that the azimuthal and time dependence of the perturbed fields will be of

the form ei(mϕ−Et), we find that the directional derivatives are

D = lµ∂µ = D0, ∆ = nµ∂µ = −∆r

2r2
D†

0,

δ = mµ∂µ =
1√
2r

L†
0, δ̄ = m̄µ∂µ =

1√
2r

L0, (3.4)

with

Dn =
∂

∂r
− iK1

∆r

(

1 +
√

1 − f(r)
)

+ n
∆′

r

∆r
,

Ln =
∂

∂θ
− K2 + n cot θ,

D†
n =

∂

∂r
+

iK1

∆r

(

1 −
√

1 − f(r)
)

+ n
△′

r

∆r
,

L†
n =

∂

∂θ
+ K2 + n cot θ, (3.5)

where

∆r = r2f(r), K1 = Er2, K2 = − m

sin θ
. (3.6)
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With the help of the Newman-Penrose formalism [21, 22], it can be shown that de-

coupled master equations controlling the perturbations of Schwarzschild-de Sitter black

hole for massless arbitrary spin fields (i.e., scalar, Weyl neutrino, source-free Maxwell elec-

tromagnetic, Rarita-Schwinger gravitino, and the linearized Einstein gravitational fields)

read [10, 23, 24]

{[D − (2s − 1)ǫ + ǫ∗ − 2sρ − ρ∗](∆ − 2sγ + µ) − [δ − (2s − 1)β − α∗](δ̄ − 2sα) (3.7)

−(s − 1)(2s − 1)Ψ2}Φs = 0,

for s = 1/2, 1, 3/2, 2 and

{[∆ + (2s − 1)γ − γ∗ + 2sµ + µ∗](D + 2sǫ − ρ) − [δ̄ + (2s − 1)α + β∗](δ + 2sβ) (3.8)

−(s − 1)(2s − 1)Ψ2}Φ−s = 0,

for s = 0, − 1/2, − 1, − 3/2, − 2.

Using eqs. (3.2), (3.3) and (3.4), eqs. (3.7) and (3.8) can be expressed as

1

r2

{

∆−s
r

∂

∂r

(

∆1+s
r

∂

∂r

)

−2iK1

√

1 − f(r)
∂

∂r
+

f(r)K2
1−isK1∆

′
r(1+

√

1−f(r))

∆r
(3.9)

+
s

2
∆′′

r +
1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

− [K2 − s cot θ]2 + 4isωr − (4s2 + 2)
λr2

3

}

Φs = 0,

1

r2

{

∆s
r

∂

∂r

(

∆1−s
r

∂

∂r

)

−2iK1

√

1 − f(r)
∂

∂r
+

f(r)K2
1 +isK1∆

′
r(1+

√

1−f(r))

∆r

−s

2
∆′′

r +
1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

− [K2 + s cot θ]2 − 4isωr − (4s2 + 2)
λr2

3

}

(r2sΦ−s) = 0.

We can easily find that they are dual by interchanging s = −s. Thus one only needs to

consider the case of positive spin state s, and obtain the results for the negative spin state

−s by substituting s −→ −s. Two of equations (3.9) can be combined into the form of

Teukolsky’s master equation [23]
{

f(r)
∂2

∂r2
+

(1 + s)△′
r

r2

∂

∂r
− 2iE

√

1 − f(r)
∂

∂r
(3.10)

+
1

r2

∂2

∂θ2
+

cot θ

r2

∂

∂θ
+ E2 − m2

r2 sin2 θ
− isE∆′

r

∆r
(1 +

√

1 − f(r))

+
4isE

r
− 2sm cot θ

r2 sin θ
+

s

2r2
∆′′

r − λ

3
(4s2 + 2) − s2

r2
cot2 θ

}

Φ̃s = 0.

Now we can calculate the entropy due to arbitrary spin fields for the nonextreme

Schwarzschild-de Sitter black hole in Painlevé coordinate by the thin-layer BWM. First we

try to seek the total number of modes with energy less than E. In order to do this, we make

use of the WKB approximation and substitute Φ̃s ∼ eiG(r, θ) into the above Teukolsky’s

master eq. (3.10), then we obtain

f(r)k2
r − 2E

√

1 − f(r)kr +
1

r2
k2

θ − E2 +
m2

r2 sin2 θ
+

2sm

r2 sin θ
cot θ

+

(

s cot θ

r

)2

+
λ

3
(4s2 + 2) − s

2r2
∆′′

r = 0, (3.11)

– 6 –
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where kr = G,r and kθ = G,θ are the momentum of the particles moving in r and θ,

respectively. In terms of the covariant metric components gµν , eq. (3.11) can be rewritten

as

f(r)k2
r − 2E

√

1 − f(r)kr − E2 − k2
θ

gθθ
− m2

gϕϕ
+ Hs = 0, (3.12)

where

Hs =
2sm

r2 sin θ
cot θ +

s2

r2
cot2 θ +

λ

3
(4s2 + 2) − s

2r2
∆′′

r . (3.13)

The roots of the eq. (3.12) are

k±
r =

E
√

1 − f(r) ±
√

E2 − f(r)
[

− k2

θ

gθθ
− m2

gϕϕ
+ Hs

]

f(r)
, (3.14)

the sign ambiguity of the square root is related to the “out-going” (k+
r ) or “in-going” (k−

r )

particles, respectively. Here we utilize the average of the radial momentum (the minus

before the k−
r is caused by a different direction),

k̃r =
k+

r − k−
r

2
=

1

f(r)

√

E2 − f(r)

(

− k2
θ

gθθ
− m2

gϕϕ
+ Hs

)

. (3.15)

So in this way, we take all kinds of particles into account. Eq. (3.15) can be rewritten as

k̃r =
1√−grr

√

E2

gtt
−

[

− k2
θ

gθθ
− (m + m0)2

gϕϕ
+ Vs

]

, (3.16)

with

m0 = s cos θ, Vs =
λ

3
(4s2 + 2) − s

2r2
∆′′

r . (3.17)

The number of modes with E is equal to the number of states in this classical phase

space [11]

nh(E, s) =
1

(2π)3

∫

drdθdϕ

∫

dk̃rdkθdm

=
1

3π

∫

dθ

∫ rh+Nε

rh+ε
dr

√−g

(gtt)2
[E2 − gttVs]

3/2, (3.18)

under the improved thin-layer BWM boundary conditions

Φ(t, r, θ, ϕ) = 0 for r < rH + ε and r > rH + Nε,

Φ(t, r, θ, ϕ) = 0 for r < rC − Nε and r > rC − ε,

where ε ≪ rH (or rC), N is an arbitrary big integer which removes the infrared divergence.

It is obviously that the location of the brick wall and the meaning of this wall in the

Painlevé coordinate are the same as that in the Schwarzschild-like coordinate.

– 7 –
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The integral is taken only over those values for which the square root in eq. (3.18)

exists. Summing over the positive and negative spin states ±s, we get the total states

number

nh(E) =
gs

2
[nh(E, s) + nh(E,−s)] ≈ gs

3π
[I1hE3 + 3I2hE], (3.19)

where I1h (I2h) represents I1H (I2H) for event horizon or I1C (I2C) for the cosmological

horizon, and these quantities are given by

I1H =

∫

dθ

∫ rH+Nε

rH+ε
dr

√−g

g2
tt

, I1C =

∫

dθ

∫ rC−ε

rC−Nε
dr

√−g

g2
tt

,

I2H =

∫

dθ

∫ rH+Nε

rH+ε
dr

√−g

gtt

[

λ

3
(2s2 + 1)

]

, I2C =

∫

dθ

∫ rC−ε

rC−Nε
dr

√−g

gtt

[

λ

3
(2s2 + 1)

]

.

In the above, we have expanded eq. (3.19) in the high frequency approximation and in-

troduced an appropriate degeneracy gs for each species of particles. Accordingly, the free

energy F at inverse Hawking temperature β can be expressed as

Fh = −
∫ ∞

0
dE

nh(E)

eβE − (−1)2s

= −gs

[

2ζ(4)
15 + (−1)2s

16πβ4
I1h + ζ(2)

3 + (−1)2s

4πβ2
I2h

]

, (3.20)

where ζ(n) = Σ∞
k=11/k

n is the Riemann zeta function, ζ(4) = π4/90, ζ(2) = π2/6, etc. We

can now obtain the entropy of the Schwarzschild-de Sitter black hole due to arbitrary spin

fields from the standard formula Sh = β2(∂Fh/∂β)

Sh/gs =
15 + (−1)2s

16

[

Ah

48πǫ2
h

+
1

45

(

1 − λr2
h

2

)

ln
Λh

ǫh

]

− 3 + (−1)2s

4

λ(1 + 2s2)

36π
Ah ln

Λh

ǫh
,

(3.21)

where the ultraviolet cutoff ǫh and the infrared cutoff Λh have been set by η2
h = 2ǫ2

h/15 and

N = Λ2
h/ǫ2

h [12, 13], the proper distance ηh from the event horizon to the inner brick wall is

ηH =
∫ rH+ε
rH

√

−grr + g2
tr/gttdr ≈ 2rH(ε/∆′

rH
)1/2 = 2

√

εrH/(1 − λr2
H) and from the cos-

mological horizon to the brick wall is ηC =
∫ rC

rC−ε

√

−grr + g2
tr/gttdr ≈ 2

√

εrC/(1 − λr2
C),

and Ah = 4πr2
H or 4πr2

C .

We find that eq. (3.21) is in agreement with Wu-Yan’s result (1.2). That is to say, the

entropy calculated in the Painlevé coordinate is exactly equal to that in the Schwarzschild-

like coordinate.

By the equivalence principle and the standard quantum field theory in flat space,

to construct a vacuum state for the massless scalar field in the Painlevé spacetime we

should leave all the positive frequency modes empty. Kraus [25] pointed out that for

the metric (2.2) it is convenient to work along a curve dr +
√

1 − g(r)dt = 0, then the

condition is simply a positive frequency with respect to t near this curve. It is easy to

prove that the modes used to calculate the entropy are essentially the same as that in the

Schwarzschild-like coordinate.

– 8 –
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3.2 Entropy of Schwarzschild-de Sitter black hole due to arbitrary spin fields

in Lemaitre coordinate

Now we calculated the entropy of Schwarzschild-de Sitter black hole due to arbitrary spin

field in Lemaitre coordinates.

For the metric (2.6), The null tetrad vectors can be expressed as

lµ =

(

− 1

2

√

f̃ ,

√

f̃(1 −
√

f̃)

2(1 +

√

f̃)
, 0, 0

)

, nµ =

(

− (1 − f̃)

4

√

f̃
,

(1 +

√

f̃)2

4

√

f̃
, 0, 0

)

,

mµ = −
√

y√
2

(

0, 0, 1, i sin θ
)

, mµ = −
√

y√
2

(

0, 0, 1,−i sin θ
)

. (3.22)

We find the non-zero spin coefficients

ρ = − 1√
y
,

µ =
(1 − f̃)

√

f̃

2√
y
,

γ =
2√
y
− 2λ

√
y

f̃
+ 2

(

m

y
− λ

3

√
y

)

,

ǫ = − 2
√

f̃

(

m

y
− λ

3

√
y

)

,

α = −β = − 1

2
√

2y
cot θ, (3.23)

and only one non-zero Weyl tensor

Ψ2 = − m

y
√

y
+

λ

3
.

Assuming that the azimuthal and time dependence of the perturbed fields will be of

the form ei(mϕ−EV ), we find that the directional derivatives are

D = lµ∂µ = D0, ∆ = nµ∂µ = −∆U

2y
D†

0,

δ = mµ∂µ =
1√
2y

L†
0, δ̄ = m̄µ∂µ =

1√
2y

L0, (3.24)

with

Dn =
∂

∂U
− iK1

∆U

(

1 −
√

f̃
)2

+ n
∆′

U

∆U
,

Ln =
∂

∂θ
− K2 + n cot θ,

D†
n =

1

f̃

∂

∂U
− iK1

△U

(

1 +

√

f̃
)2

f̃
+ n

△′
U

∆U
,

L†
n =

∂

∂θ
+ K2 + n cot θ, (3.25)
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where

∆U = y(1 − f̃), K1 = Ey, K2 = − m

sin θ
. (3.26)

Substituting (3.24) and (3.23) into (3.7) and (3.8), we can obtain the Teukolsky’s master

equation

{

(1 − f̃)
1

f̃

∂2

∂U2
+

(1 + s)△′
U

y

∂

∂U
− (1 + f̃)2iE

f̃

∂

∂U

+
1

y

∂2

∂θ2
+

cot θ

y

∂

∂θ
− 1 − f̃

f̃
E2 − m2

y sin2 θ

− isE∆′
U

∆U

(

1 −
√

f̃
)2

+
4isE√

y
− 2sm cot θ

y sin θ
+

s

2y

∆′′
U − λ

3
(4s2 + 2) − s2

y
cot2 θ

}

Φ̃s = 0. (3.27)

Taking Φ̃s ∼ eiG(U, θ) into the above Teukolsky’s master equation (3.27), we have

1 − f̃

f̃
k2

U − 1 + f̃

f̃
2EkU +

1 − f̃

f̃
E2 − k2

θ

g̃θθ
− m2

g̃ϕϕ
+ Hs = 0, (3.28)

with

Hs =
2sm

y sin θ
cot θ +

s2

y
cot2 θ +

λ

3
(4s2 + 2) − s

2y
∆′′

U , (3.29)

where kU = G,U and kθ = G,θ are the momentum of the particle moving in U and θ,

respectively. We get the roots of kU as

k±
U =

1 + f̃

(1 − f̃)
E ±

√

f̃

1 − f̃

√

4E2

1 − f̃
+

k2
θ

g̃θθ
+

m2

g̃ϕϕ
− Hs, (3.30)

the roots are related to the “out-going” (k+
U ) and “in-going” (k−

U ) particles, respectively.

Here, we make use of the average of the U -direction momentum (the minus before the

k−
U is caused by a different direction)

k̃U =
k+

U − k−
U

2
=

√

f̃

1 − f̃

√

4E2

1 − f̃
+

k2
θ

g̃θθ
+

m2

g̃ϕϕ
− Hs. (3.31)

Eq. (3.31) can be rewritten as

k̃U =
1

√

−gUU

√

E2

gV V
+

k2
θ

g̃θθ
+

(m + m0)2

g̃ϕϕ
− Vs, (3.32)

with

m0 = s cos θ, Vs =
λ

3
(4s2 + 2) − s

2y
∆′′

U . (3.33)
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Summing over the positive and negative spin states ±s, we get the total states number

nh(E) =
gs

2
[nh(E, s) + nh(E,−s)] ≈ gs

3π
[I1hE3 + 3I2hE], (3.34)

with

I1H =

∫

dθ

∫ UH+Ñ ε̃

UH+ε̃
dU

√−g̃

(gV V )2
, I1C =

∫

dθ

∫ UC−ε̃

UC−Ñ ε̃
dU

√−g̃

(gV V )2
, (3.35)

I2H =

∫

dθ

∫ UH+Ñ ε̃

UH+ε̃
dU

√−g̃

gV V

[

λ

3
(2s2 + 1)

]

, I2C =

∫

dθ

∫ UC−ε̃

UC−Ñ ε̃
dU

√−g̃

gV V

[

λ

3
(2s2 + 1)

]

,

where

√

−g̃ =
1

2
sin θ

√

3m2

λ

[

1 − 2e
√

3λU + e2
√

3λU

e
√

3λU

]

+
λ

3

[

3m(1 − 2e
√

3λU + e2
√

3λU )

2λe
√

3λU

]2

,

gV V =
1

4

{

1 − 2m

[

3m(1 − 2e
√

3λU +e2
√

3λU )

2λe
√

3λU

]−1/3

−λ

3

[

3m(1−2e
√

3λU + e2
√

3λU )

2λe
√

3λU

]2/3}

.

In above calculation, we used the improved thin-layer BWM boundary conditions

Φ(V,U, θ, ϕ) = 0 for U < UH + ε̃ and U > UH + Ñ ε̃,

Φ(V,U, θ, ϕ) = 0 for U < UC − Ñ ε̃ and U > UC − ε̃,

where ε̃ = 2/
√

3λ ln
[
√

λε3/6m +
√

λε3/6m + 1
]

which gives the relation between the

location of the brick wall in the Lemaitre and Schwarzschild-like coordinates, Ñ is an

arbitrary big integer, and UH and UC are

UH =
2√
3λ

ln

[

√

4 cos3(α + π/3)

cos 3α
+

√

4 cos3(α + π/3)

cos 3α
+ 1

]

=
2√
3λ

ln

[

√

λr3
H

6m
+

√

λr3
H

6m
+ 1

]

,

UC =
2√
3λ

ln

[

√

4 cos3 α

cos 3α
+

√

4 cos3 α

cos 3α
+ 1

]

=
2√
3λ

ln

[

√

λr3
C

6m
+

√

λr3
C

6m
+ 1

]

,

which correspond to the event and cosmological horizons of the Schwarzschild-de Sitter

black hole.

Then, the free energy can be expressed as

Fh = −
∫ ∞

0
dE

nh(E)

eβE − (−1)2s

= −gs

[

2ζ(4)
15 + (−1)2s

16πβ4
I1h + ζ(2)

3 + (−1)2s

4πβ2
I2h

]

, (3.36)

– 11 –



J
H
E
P
0
9
(
2
0
0
7
)
0
6
7

We can now obtain the entropy of the Schwarzschild-de Sitter black hole due to arbitrary

spin fields in Lemaitre coordinate as

Sh/gs =
15 + (−1)2s

16

[

Ah

48πǫ2
h

+
1

45

(

1 − λr2
h

2

)

ln
Λh

ǫh

]

− 3 + (−1)2s

4

λ(1 + 2s2)

36π
Ah ln

Λh

ǫh
,

(3.37)

where the ultraviolet cutoff ǫh and the infrared cutoff Λh have been set by η2
h = 2ǫ2

h/15

and Ñ = Λ2
h/ǫ2

h [12, 13], the proper distance ηh from the event horizon to the inner brick

wall is ηH =
∫ UH+ε̃
UH

√

−gUU + g2
V U/gV V dU ≈ 2

√

εrH/(1 − λr2
H) and from the cosmological

horizon to the brick wall is ηC ≈ 2
√

εrC/(1 − λr2
C), and Ah = 4πr2

H or 4πr2
C .

Comparing with eqs. (1.2) and (3.21), we find that it equals to the entropies calculated

in the Painlevé and Schwarzschild-like coordinates.

From above discussions we find that although both the Painlevé and the Lemaitre

spacetimes do not possess the singularity at the event and cosmological horizons, the en-

tropies calculated in the Painlevé and the Lemaitre coordinates are equivalent to that

calculated in the Schwarzschild-like coordinate. It is well known that the wave modes

obtained by using semiclassical techniques, in general, are the exact modes of the quan-

tum system in the asymptotic regions. Thus, if the asymptotic structure of the space-

time is the same for the two coordinates, then the semiclassical wave modes associated

with these two coordinate systems will be the same. From eq. (2.5) we know that the

differential relationship between the Lemaitre time V and the Painlevé time t can be ex-

pressed as dV = dt + dr̃ = 2dt + dr/
√

1 − f(r). Now let us also work along the curve

dr +
√

1 − f(r)dt = 0, we obtain dV = dt. It is shown that the two definitions of positive

frequency — with respect to V in the Lemaitre spacetime and with respect to t en the

Painlevé spacetime — do coincide. Therefore, it should not be surprised at the entropies

driven from the modes in the Lemaitre and Painlevé coordinates are the same.

4. Summary

We have studied the statistical-mechanical entropies arising from the quantum mass-

less arbitrary spin fields in the Painlevé and Lemaitre coordinate representations of the

Schwarzschild-de Sitter black hole using the improved thin-layer BWM. At first sight, we

might have anticipated that the results are different from that of the Schwarzschild-like co-

ordinate due to two reasons: (a) both the Painlevé and Lemaitre coordinate representations

possess a distinguishing property — there are no singularities at f(r) = 0 so the metrics

are regular at the event and cosmological horizons of black hole; (b) it is not obvious that

the time V in the Lemaitre spacetime tends to the time t in the Painlevé spacetime. How-

ever, by comparing our results (3.21) and (3.37), which are worked out exactly, with the

well-known result (1.2), we have found that in both these coordinate representations the

entropies are the same as that in the standard Schwarzschild-like coordinate representation.

There are two reasons lead us to obtain the same results in the different coordinates. a)

Although either the Painlevé or Lemaitre coordinate does not possess the singularity, the

event and cosmological horizons manifests themselves as singularities in the action function

– 12 –
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and then there could be particles production. Hence we can use the knowledge of the wave

modes of the quantum field to calculate the statistical-mechanical entropies. b) When we

construct a vacuum state for the massless arbitrary spin fields in the Painlevé spacetime

we take the condition dr +
√

1 − f(r)dt = 0, and then we find that the modes used to

calculate the entropies in both the Painlevé and Lemaitre coordinates are exactly the same

as that in the Schwarzschild-like coordinates since both V and t tend to the Schwarzschild

time ts as r goes to infinity under this condition. Therefore, it should not be a surprise

that the entropies driven from the modes in the Lemaitre, Painlevé, and Schwarzschild-like

coordinates are the same.
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